16 research outputs found

    Viabilidad de las convenciones probatorias en la etapa de juicio oral, en el proceso penal, Huancayo 2021

    Get PDF
    La presente tesis responde al problema de investigación que parte la siguiente interrogante: ¿En qué medida es viable la aplicación de las convenciones probatorias en la etapa de juicio oral, en el proceso penal, Huancayo 2021? El objetivo general fue determinar la relación entre las dos variables, siendo el Objetivo: Establecer en qué medida es viable la aplicación de las convenciones probatorias en la etapa de juicio oral, en el proceso penal, Huancayo 2021; Para ello nuestra hipótesis fue. Es viable la aplicación de las convenciones probatorias en la etapa de juicio oral, en el proceso penal, a efectos de poder garantizar una justicia oportuna, y eficaz a los justiciables, Huancayo 2021. La Investigación se ubica dentro del método general deductivo – inductivo, tipo de investigación: Básico; en el Nivel: descriptivo - explicativo; diseño no experimental Transeccional, En cuanto se refiere a la población este se encuentra constituida por 60 profesionales con conocimiento especializados en derecho penal y procesal penal con una muestra de 35 especialistas, habiendo aplicado el tipo de muestreo no probabilístico, para la recolección de información se utilizó, la técnica de la encuesta; el instrumento utilizado para la medición de las variables fue validados por 3 abogados expertos en derecho penal y procesa, penal, quienes realizaron la evaluación correspondiente

    Mapping QTLs associated with fruit quality traits in peach Prunus persica (L.) Batsch using SNP maps

    Get PDF
    [EN] Fruit quality is an essential criterion used to select new cultivars in peach breeding programs and is determined based on a combination of organoleptic and nutritional traits. The aim of this study was to identify quantitative trait loci (QTLs) for fruit quality traits in an F-1 nectarine population derived from 'Venus' and 'Big Top' cultivars. The progeny were evaluated over 4 years for agronomical and biochemical characteristics and genotyped using simple sequence repeat (SSR) markers and 'IPSC 9K peach SNP array v1'. Two genetic maps were constructed using 411 markers. The 'Venus' map spanned 259 cM on nine linkage groups (LGs) with 104 markers. The 'Big Top' map spanned 464 cM on 10 LGs with 122 markers. Single or Multiple QTL models mapping was applied separately for each year and all years combined. A total of 54 QTLs mapped over 12 LGs belonged to seven peach chromosomes. Most of the QTLs were consistent over the 4 years of study and were validated with the multi-year analysis. QTLs for total phenolic, flavonoid, and anthocyanin contents were reported for the first time in peach. LG 4 in 'Venus' and LG 5 in 'Big Top' showed the highest numbers of QTLs. This work represents the first study in an F-1 nectarine family to identify peach genomic regions that control fruit quality traits using 'IPSC 9K SNP array v1' and provides useful information for marker-assisted breeding to produce peaches with better antioxidant content and healthy attributes.We are grateful to C.H. Crisosto (University of California, Davis) for providing SSR markers (UCDCH15 and BINEPPCU6377). We thank E. Sierra and S. Segura for the technical assistance and plant management in the field and N. Ksouri for the bioinformatic assistance. We are grateful to A. Casas and E. Igartua for the assistance and support with the statistical analysis using JoinMap (R) 4 software. This study was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) grants AGL-2008-00283, AGL2011-24576, and AGL2014-52063-R and was co-funded by the FEDER and the Regional Government of Aragon (A44) with European Social Fund. W. Abidi was supported by a JAE-Pre fellowship from the Consejo Superior de Investigaciones Cientificas (CSIC), which enabled him to visit the University of California, Davis, and the IBMCP, Valencia, Spain. J.L. Zeballos received a master fellow funded by the Spanish Agency for International Cooperation and Development (AECID).Zeballos, JL.; Adibi, W.; Giménez Millán, R.; Monforte Gilabert, AJ.; Moreno, MA.; Gogorcena, Y. (2016). Mapping QTLs associated with fruit quality traits in peach Prunus persica (L.) Batsch using SNP maps. Tree Genetics and Genomes. 12(3):1-17. https://doi.org/10.1007/s11295-016-0996-9S117123Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41–50Abidi W, Jiménez S, Moreno MÁ, Gogorcena Y (2011) Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. Int J Mol Sci 12:6919–6935Abidi W, Cantín C, Gonzalo MJ, Moreno MA, Gogorcena Y (2012) Genetic control and location of QTLs involved in antioxidant capacity and fruit quality traits in peach [Prunus persica (L.) Batch]. Acta Hortic 962:129–134Abidi W, Cantín CM, Jiménez S, Giménez R, Moreno MA, Gogorcena Y (2015) Effect of antioxidant compounds and total sugars and genetic background on the chilling injury susceptibility of a non-melting peach [Prunus persica (L.) Batsch] progeny. J Sci Food Agric 95:351–358Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 11:2534–2547Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ et al (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 102:1572–1577Broman KW, Saunak S (2009) A guide to QTL mapping with R/qtl. Statistic for biology and health. Springer, New York. doi: 10.1007/978-0-387-92125-9Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890Byrne DH, Raseira MB, Bassi D, Piagnani MC, Gasic K, Moreno MA, Pérez S (2012) Peach. In: Badenes ML, Byrne DH (eds) Fruit breeding, vol 8. Handbook of plant breeding, vol 8. Springer, New York, pp 505–569Cantín CM, Gogorcena Y, Moreno MA (2009a) Analysis of phenotypic variation of sugar profile in different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Sci Food Agric 89:1909–1917Cantín CM, Moreno MA, Gogorcena Y (2009b) Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agric Food Chem 57:4586–4592Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010a) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87Cantín CM, Gogorcena Y, Moreno MA (2010b) Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica 171:211–226Crisosto CH (2002) How do we increase peach consumption? Acta Hortic 592:601–605Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:1–16Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815Da Silva Linge C, Bassi D, Bianco L, Pacheco I, Pirona R, Rossini L (2015) Genetic dissection of fruit weight and size in an F2 peach (Prunus persica (L.) Batsch) progeny. Mol Breed 35:71Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98(1):18–31Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896Dirlewanger E, Cosson P, Renaud C, Monet R, Poëssel JL, Moing A (2006) New detection of QTLs controlling major fruit quality components in peach. Acta Hortic 713:65–72Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204Eduardo I, López-Girona E, BatlIe I, Reig G, Iglesias I, Howad W, Arús P, Aranzana MJ (2014) Development of diagnostic markers for selection of the subacid trait in peach. Tree Genet Genomes 10:1695–1709Eduardo I, Picañol R, Rojas E, BatlIe I, Howad W, Aranzana MJ, Arús P (2015) Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica 205:627–636Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159FAOSTAT (2015) Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/291/default.aspx . Accessed 1 August 2015Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349Fresnedo-Ramírez J, Bink MCAM, van der Weg E, Famula TR, Crisosto CH, Frett TJ, Gasic K, Peace CP, Gradziel TM (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breed 35:166Frett T, Reighard G, Okie W, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381GDR (2015) Genome database for Rosaceae. http://www.rosaceae.org/species/prunus_persica/genome_v1.0 . Accessed 13 Nov 2015Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Le Dantec L, Gao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28(4):667–682Infante R, Farcuh M, Meneses C (2008) Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage. J Sci Food Agric 88:2073–2078Jáuregui B, De Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arús P (2001) A reciprocal translocation between ‘Garfi’ almond and ‘Nemared’ peach. Theor Appl Genet 102:1169–1176Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Annu Rev Plant Biol 64:19–46Martínez-García PJ, Fresnedo-Ramírez J, Parfitt DE, Gradziel TM, Crisosto CH (2013a) Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Mol Biol 81:161–174Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013b) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36Nielsen R, Hubisz MJ, Clark AG (2004) Reconstituting the frequency spectrum of ascertained single-nucleotide polymorphism data. Genetics 168:2373–2382Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Rodrigo Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Meneses C (2015) Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L.) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 1:86Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587Orazem P, Stampar F, Hudina M (2011) Quality analysis of ‘Redhaven’ peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chem 124(4):1691–1698Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, Rossini L, Vecchietti A (2014) QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genet Genomes 10:1223–1242. doi: 10.1007/s11295-014-0756-7Peace C, Norelli J (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae, vol 6. Plant genetics and genomics: crops and models. Springer, New York, pp 19–53Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, Tartarini S, Dondini L, Giorgio Pea G, Daniele Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 3:166Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233–242Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897Romeu J, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes M, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genomes 11:8Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 31:1506–1517. doi: 10.1007/s11105-013-0625-9Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7(6), e38992Sánchez G, Romeu J, García J, Monforte AJ, Badenes M, Granell A (2014) The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biology 14:137Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3(1):31–33. doi: 10.1038/nmeth842Van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen, NetherlandsVerde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291–297Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9k SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7(4), e35668Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, et al. (Int Peach Genome I) (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487-U447Verdu CF, Guyot S, Childebrand N, Bahut M, Celton JM, Gaillard S, Lasserre-Zuber P, Troggio M, Guilet D, Laurens F (2014) QTL analysis and candidate gene mapping for the polyphenol content in cider apple. PLoS One 9(10), e107103Vizzotto M, Porter W, Byrne D, Luis Cisneros-Zevallos L (2014) Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chem 164:363–370Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78Wargovich MJ, Morris J, Moseley V, Weber R, Byrne DH (2012) Developing fruit cultivars with enhanced health properties, in fruit breeding. In: Badenes ML, Byrne DH (eds) Fruit breeding, vol 8, Handbook of plant breeding. Springer, New York, pp 37–68Yang J, Hu Ch, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genomes 9:573–586Zeballos J (2012) Identification of genomic region related to fruit quality traits in peach. Universidad de Lleida, Zaragoza, SpainZeballos J, Abidi W, Giménez R, Monforte AJ, Moreno MA, Gogorcena Y (2015) QTL analysis of fruit quality traits in peach [Prunus persica (L.) Batsch] using dense SNP maps. Acta Hortic 1084:703–710Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arús P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745–756Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10:35–5

    Valorización de compañía Cementos Pacasmayo S.A.A.

    Get PDF
    El objetivo de la presente investigación es determinar el valor fundamental de la acción de la empresa Cementos Pacasmayo S.A.A. al cierre del ejercicio 2021. Para lograrlo, se han utilizado metodologías de valorización tradicionales y efectivas. Entre las más relevantes, se utilizó el flujo de caja descontado (FCD). Se escogió esta compañía por la relación y el aporte que la industria cementera genera sobre la economía peruana. La empresa tiene 64 años brindando soluciones a sus clientes y actualmente cotiza acciones comunes en la Bolsa de Valores de Lima (BVL) y participa en la New York Stock Exchange (NYSE). En 2021 fue considerada una de las 15 mejores empresas de mayor reputación en el índice ESG de la BLV y S&P Global. A pesar del escenario negativo como consecuencia de la pandemia del Covid-19, la compañía ha sabido responder adecuadamente y aprovechar las oportunidades para ampliar su crecimiento en producción de despachos de cemento, lo que refleja una adecuada gestión de recursos. El tiempo de proyección en flujo que se ha considerado es de 10 años

    Heterogeneidad de la vegetación en ambientes basálticos del centro de Argentina

    Get PDF
    Se decribe la flora y la vegetación de pasiajes basálticos de la Sierra de Los Cóndores, Córdoba, Argentina. La vegetación se estudió según criterios de la escuela de Braun-Blanquet; la matriz de 98 inventarios × 272 spp. fue clasificada a través del método ISOPAM. El análisis discrimina tres comunidades correspondientes respectivamente a las tres geoformas relevadas en estos paisajes: Islas rocosas (inselbergs), la Matriz Natural que rodea a las Islas y la Matriz Agrícola que circunda al complejo de paisajes basálticos. Las tres comunidades difieren en su composición florística: las Islas rocosas son los sitios menos perturbados, más ricos en especies, con mayor diversidad, mayor número de especies endémicas y su fisonomía está dominada por formas arbustivas. En el otro extremo, la Matriz Agrícola es la más pobre en especies, la de menor diversidad y endemicidad, y predominan las hierbas perennes y anuales. Las Islas rocosas y la Matriz Natural registran bajos números de especies exóticas en su composición, mientras cerca del 50% de la flora de la matriz agrícola se compone de especies adventicias. Los resultados de este estudio revelan la importancia de las islas rocosas basálticas para la conservación del patrimonio natural de la provincia de Córdoba.Fil: Cantero, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Biología Agrícola; ArgentinaFil: Mulko, José. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Biología Agrícola; ArgentinaFil: Nuñez, César. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Biología Agrícola; ArgentinaFil: Zeballos, Sebastián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Sfragulla, Jorge A.. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Amuchastegui, Andrea. Universidad Nacional de Rio Cuarto. Facultad de Agronomia y Veterinaria. Departamento de Biología Agrícola; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas; ArgentinaFil: Chiarini, Franco Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Ariza Espinar, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Bonalumi, Aldo Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Brandolin, Pablo Germán. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer

    Get PDF
    Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (<50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, <50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters

    Vegetation and flora in basaltic outcrops of central Argentina

    Get PDF
    En este trabajo se relevó, caracterizó la flora y exploró la variación composicional de lavegetación en afloramientos de basaltos del centro de Argentina y se determinaron las asociacionesentre la composición florística y diferentes variables climáticas representativas de la variación aescala regional. Se relevaron cuatro complejos de afloramientos desde los 400 hasta 900 m snm,estimándose abundancia-cobertura de todas las plantas vasculares presentes en 48 censos. Losatributos composicionales estructurales de la vegetación revelaron diferencias significativas entreafloramientos de latitudes diferentes. La composición florística regional está asociada a procesosbiogeográficos-climáticos. Se confirma la importancia de estas variables en la estructuracióndel hábitat y filtrado abiótico de especies y la importancia de su conocimiento para establecerprioridades en su conservación. Los afloramientos basálticos, aún no explotados, constituyenhábitats importantes para la conservación de la biodiversidad, como refugios de especies endémicasy especies sobreutilizadasThe flora and the vegetation of basaltic outcrops were studied in central Argentina. Cover-abundance scores were recorded for 303 plant species in 48 relevés distributed in four outcrop locations ranging between 400 to 900 m a.s.l. The association between the floristic composition and climatic variables were explored through an ordination analysis, and the vegetation of the outcrops was classified into four major types through a classification technique. The floristic composition of the outcrops was significantly associated to climate at the regional scale and the four sites differed in species richness, diversity and dominance. We conclude that well conserved basaltic outcrops from central Argentina are relevant habitats for the conservation of endemic species and overexploited taxa.Fil: Cantero, Juan Jose. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Núñez, César O.. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Mulko, José. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Brandolin, Pablo Germán. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amuchastegui, Andrea. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Sfragulla, Jorge. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Bonalumi, Aldo Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Martinez, Amancay Nancy. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Geología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zeballos, Sebastián Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Cabido, Marcelo Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Chiarini, Franco Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Ariza Espinar, Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Estudio fitoquímico de hojas de Uncaria guianensis y evaluación de actividad antibacteriana Phytochemical study of Uncaria guianensis leaves and antibacterial activity evaluation

    No full text
    Del extracto de éter de petróleo de hojas de Uncaria guianensis (Rubiaceae), se aisló un compuesto tipo clorina denominado éster etílico de feoforbida a y una mezcla de esteroles conocidos como &#946;-sitosterol y estigmasterol. Sus estructuras fueron elucidadas por análisis detallado de RMN, incluyendo técnicas bidimensionales, y por comparación con datos reportados en la literatura. Posteriormente, se evaluó la actividad antibacteriana al éster etílico de feoforbida a contra dos cepas Gram(+): S. aureus ATCC 6538 y E. faecalis ATCC 29212 y contra tres cepas Gram (-): E. coli ATCC 25922, S. typhimurium ATCC 14028s y S. typhimurium MS7953. Se encontró actividad significativa contra S. aureus, E. faecalis, E. coli y S. tiphymurium MS7953.<br>A chlorin compound, pheophorbide a ethyl ester and a mixture of sterols known as &#946;-sitosterol and stigmasterol, were isolated from the petroleum ether extract of Uncaria guianensis (Rubiaceae) leaves. Their structures were elucidated by detailed analysis of NMR spectra, including bidimensional techniques and by comparison with literature data. The antibacterial activity for the pheophorbide a ethyl ester was evaluated against two Gram (+) strains: S. aureus ATCC 6538 y E. faecalis ATCC 29212 and three Gram (-) strains: E. coli ATCC 25922, S. typhimurium ATCC 14028s y S. typhimurium MS7953S. aureus ATCC 6538 and E. fecalis ATCC 29212, finding significant activity against S. aureus 6538, E. faecalis 29212, S. tiphymurium MS7953 and E. coli 25922

    Microsatellite instability in young patients with rectal cancer: Molecular findings and treatment response

    No full text

    Microsatellite instability in young patients with rectal cancer: Molecular findings and treatment response

    No full text

    Microsatellite instability in young patients with rectal cancer: molecular findings and treatment response

    No full text
    No abstract available
    corecore